Abstract
In this work, the suitability for the production of sustainable and lightweight materials with specific mechanical properties and potentially lower costs was studied. Agave fiber (AF), an agro-industrial waste, was used as a reinforcement and azodicarbonamide (ACA) as a chemical blowing agent (CBA) in the production of bilayer materials via rotational molding. The external layer was a composite of linear medium density polyethylene (LMDPE) with different AF contents (0–15 wt %), while the internal layer was foamed LMDPE (using 0–0.75 wt % ACA). The samples were characterized in terms of thermal, morphological and mechanical properties to obtain a complete understanding of the structure-properties relationships. Increases in the thicknesses of the parts (up to 127%) and a bulk density reduction were obtained by using ACA (0.75 wt %) and AF (15 wt %). Further, the addition of AF increased the tensile (23%) and flexural (29%) moduli compared to the neat LMDPE, but when ACA was used, lower values (75% and 56% for the tensile and flexural moduli, respectively) were obtained. Based on these results, a balance between mechanical properties and lightweight can be achieved by selecting the AF and ACA contents, as well as the performance and aesthetics properties of the rotomolded parts.
Subject
Polymers and Plastics,General Chemistry
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献