Micro-Ultrasonic Viscosity Model Based on Ultrasonic-Assisted Vibration Micro-Injection for High-Flow Length Ratio Parts

Author:

Lou Yan,Xiong Jianjun

Abstract

A micro-ultrasonic (MU) viscosity model based on ultrasonic-assisted vibration micro-injection for high- flow length ratio polymer parts was established. This model considered the effects of ultrasonic energy and the characteristic microdimension. Ultrasonic energy parameters (such as the ultrasonic amplitude, frequency, and ultrasound velocity), the characteristic microdimension, and the molecular chain length (MCL) were introduced into the MU viscosity model. An ultrasonic micro-injection experimental platform was built on an injection molding machine. Polypropylene (PP) filling experiments were carried out using microgrooves with different flow length ratios (depth-to-width ratios of 3:1, 5:1, and 10:1). The validity and accuracy of the MU viscosity model were examined through a filling experiment with polypropylene (PP) microgroove injection molding and by a flow pressure difference experiment with polystyrene (PS). The results showed that the MU viscosity model was in better agreement with the experimental results compared to other models. The maximum error of the MU model was 4.9%. Ultrasound-assisted vibration had great effects on the filling capacity for microgrooves with high flow length ratios (depth-to-width ratios greater than 5:1). The filling capacity increased as the ultrasonic amplitude increased.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3