Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques

Author:

Song Jinkyu,Kim MyungwoongORCID,Lee HoikORCID

Abstract

In this review, we describe recent relevant advances in the fabrication of polymeric nanofibers to address challenges in conventional approaches such as electrospinning, namely low throughput and productivity with low size uniformity, assembly with a regulated structure and even architecture, and location with desired alignments and orientations. The efforts discussed have mainly been devoted to realize novel apparatus designed to resolve individual issues that have arisen, i.e., eliminating ejection tips of spinnerets in a simple electrospinning system by effective control of an applied electric field and by using mechanical force, introducing a uniquely designed spinning apparatus including a solution ejection system and a collection system, and employing particular processes using a ferroelectric material and reactive precursors for atomic layer deposition. The impact of these advances to ultimately attain a fabrication technique to solve all the issues simultaneously is highlighted with regard to manufacturing high-quality nanofibers with high- throughput and eventually, practically implementing the nanofibers in cutting-edge applications on an industrial scale.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3