Optical Trajectory Manipulations Using the Self-Written Waveguide Technique

Author:

Malallah Ra’edORCID,Cassidy Derek,Wan Min,Muniraj Inbarasan,Healy John J.,Sheridan John T.

Abstract

This study is novel for several reasons: We used a thin drop cast layer of dry photosensitive materials to study the behaviors of wet photopolymer media using microscopic distances during the Self-Written Waveguide (SWW) process; then, we examined the self-trajectories formed inside the solid material. The results provide a framework for theoretical and experimental examinations by handling the effects of manipulating the alignment of fibers. The other main advantage of these techniques is their lightweight, easy to process, highly flexible, and ultimately low-cost nature. First, the SWW process in wet photopolymer media (liquid solutions) was examined under three cases: single-, counter-, and co-fiber exposure. Then, the SWWs formed inside the solid material were examined along with the effects of manipulating the alignment of the fibers. In all cases, high precision measurements were used to position the fiber optic cables (FOCs) before exposure using a microscope. The self-writing process was indirectly monitored by observing (imaging) the light emerging from the side of the material sample during SWW formation. In this way, we examined the optical waveguide trajectories formed in Acrylamide/Polyvinyl Alcohol (AA/PVA), a photopolymer material (sensitized at 532 nm). First, the transmission of light by this material is characterized. Then, the bending and merging of the waveguides that occur are investigated. The predictions of our model are shown to qualitatively agree with the observed trajectories. The largest index changes taking place at any time during exposure, i.e., during SWW formation, are shown to take place at the positions where the largest exposure light intensity is present. Typically, such maxima exist close to the input face. The first maximum is referred to as the location of the Primary Eye. Other local maxima also appear further along the SWW and are referred to as Secondary Eyes, i.e., eyes deeper within the material.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3