Synthesis of a Novel Semi-Conductive Composites Doping with La0.8Sr0.2MnO3 for Excellent Electric Performance for HVDC Cable

Author:

Yin HongxiaORCID,Cui Yingcao,Wei Yanhui,Hao Chuncheng,Lei Qingquan

Abstract

The semi-conductive layer located between the wire core and the insulation layer in high voltage direct current (HVDC) cable plays a vital role in uniform electric field and affecting space charges behaviors. In this work, the research idea of adding ionic conductive particles to semi-conductive materials to improve the conductive network and reduce the energy of the moving charge inside it and to suppress charge injection was proposed. Semi-conductive composites doped with different La0.8Sr0.2MnO3 (LSM) contents were prepared. Resistivity at different temperatures was measured to investigate the positive temperature coefficient (PTC) effect. Pulse electro-acoustic (PEA) method and thermal-stimulation depolarization currents (TSDC) tests of the insulation layers were carried out. From the results, space charge distribution and TSDC currents in the insulation samples were analyzed to evaluate the inhibitory effect on space charge injection. When LSM content is 6 wt. %, the experimental results show that the PTC effect of the specimen and charge injection are both being suppressed significantly. The maximum resistivity of it is decreased by 53.3% and the insulation sample has the smallest charge amount, 1.85 × 10−7 C under 10 kV/mm—decreased by 40%, 3.6 × 10−7 C under 20 kV/mm—decreased by 45%, and 6.42 × 10−7 C under 30 kV/mm—decreased by 26%. When the LSM content reaches 10 wt. %, the suppression effect on the PTC effect and the charge injection are both weakened, owing to the agglomeration of the conductive particles inside the composites which leads to the interface electric field distortion and results in charge injection enhancement.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3