Abstract
In this study, we fabricated poly (methyl methacrylate) (PMMA) microcellular foams featuring tunable cellular structures and porosity, through adjusting the supercritical CO2 foaming conditions. Experimental testing and finite element model (FEM) simulations were conducted to systematically elucidate the influence of the foaming parameters and structure on compressive properties of the foam. The correlation between the cellular structure and mechanical properties was acquired by separating the effects of the cell size and foam porosity. It was found that cell size reduction contributes to improved mechanical properties, which can be attributed to the dispersion of stress and decreasing stress concentration.
Funder
National Natural Science Foundation of China
111 Project
Joint Fund
Subject
Polymers and Plastics,General Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献