Fast Production of Cellulose Nanocrystals by Hydrolytic-Oxidative Microwave-Assisted Treatment

Author:

Amoroso Luana,Muratore GiuseppeORCID,Ortenzi Marco AldoORCID,Gazzotti Stefano,Limbo Sara,Piergiovanni Luciano

Abstract

In contrast to conventional approaches, which are considered to be energy- and time-intensive, expensive, and not green, herein, we report an alternative microwave-assisted ammonium persulfate (APS) method for cellulose nanocrystals (CNCs) production, under pressurized conditions in a closed reaction system. The aim was to optimize the hydrolytic-oxidative patented procedure (US 8,900,706), replacing the conventional heating with a faster process that would allow the industrial scale production of the nanomaterial and make it more appealing to a green economy. A microwave-assisted process was performed according to different time–temperature programs, varying the ramp (from 5 to 40 min) and the hold heating time (from 60 to 90 min), at a fixed reagent concentration and weight ratio of the raw material/APS solution. Differences in composition, structure, and morphology of the nanocrystals, arising from traditional and microwave methods, were studied by several techniques (TEM, Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance (ATR), dynamic light scattering (DLS), electrophoretic light scattering (ELS), thermogravimetric analysis (TGA), X-ray diffraction (XRD)), and the extraction yields were calculated. Fine tuning the microwave treatment variables, it was possible to realize a simple, cost-effective way for faster materials’ preparation, which allowed achieving high-quality CNCs, with a defined hydrodynamic diameter (150 nm) and zeta potential (−0.040 V), comparable to those obtained using conventional heating, in only 90 min instead of 16 h.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3