Numerical Simulation of Coupled Pyrolysis and Combustion Reactions with Directly Measured Fire Properties

Author:

Moinuddin KhalidORCID,Razzaque Qazi Samia,Thomas AnanyaORCID

Abstract

In this study, numerical simulations of coupled solid-phase reactions (pyrolysis) and gas-phase reaction (combustion) were conducted. During a fire, both charring and non-charring materials undergo a pyrolysis as well as a combustion reaction. A three-dimensional computational fluid dynamics (CFD)-based fire model (Fire Dynamics Simulator, FDS version 6.2) was used for simulating the PMMA (non-charring), pine (charring), wool (charring) and cotton (charring) flaming fire experiments conducted with a cone calorimeter at 50 and 30 kW/m2 irradiance. The inputs of chemical kinetics and the heat of reaction were obtained from sample mass change and enthalpy data in TGA and differential scanning calorimetry (DSC) tests and the flammability parameters were obtained from cone calorimeter experiments. An iso-conversional analytical model was used to obtain the kinetic triplet of the above materials. The thermal properties related to heat transfer were also mostly obtained in house. All these directly measured fire properties were inputted to FDS in order to model the coupled pyrolysis–combustion reactions to obtain the heat release rate (HRR) or mass loss. The comparison of the results from the simulations of non-prescribed fires show that experimental HRR or mass loss curve can be reasonably predicted if input parameters are directly measured and appropriately used. Some guidance to the optimization and inverse analysis technique to generate fire properties is provided.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference40 articles.

1. National Construction Code Series Volume 1, Building Code of Australia 2019, Class. 2 to 9 Buildings;Board,2019

2. 834: Fire Resistance Tests-Elements of Building Construction;Standard,2002

3. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model;McGrattan,2013

4. Modeling chemical and physical processes of wood and biomass pyrolysis

5. Development of pyrolysis models for charring polymers

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3