Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading

Author:

Farokhi Nejad AliORCID,Alipour Roozbeh,Shokri Rad Mozafar,Yazid Yahya Mohd,Rahimian Koloor Seyed SaeidORCID,Petrů MichalORCID

Abstract

Polyurethane foams are one of the most common auxetic structures regarding energy absorption enhancement. This present study evaluates the result reliability of two different numerical approaches, the H-method and the P-method, to obtain the best convergence solution. A polymeric re-entrant cell is created with a beam element and the results of the two different methods are compared. Additionally, the numerical results compare well with the analytical solution. The results show that there is a good agreement between converged FE models and the analytical solution. Regarding the computational cost, the P-method is more efficient for simulating the re-entrant structure subjected to axial loading. During the second part of this study, the re-entrant cell is used for generating a polymeric auxetic cellular tube. The mesh convergence study is performed on the cellular structures using the H- and P- methods. The cellular tube is subjected to tensional and compressive loading, the module of elasticity and Poisson’s ration to calculate different aspect ratios. A nonlinear analysis is performed to compare the dynamic response of a cellular tube versus a solid tube. The crashworthiness indicators are addressed and the results are compared with equivalent solid tubes. The results show that the auxetic cellular tubes have better responses against compressive loading. The primary outcome of this research is to assess a reliable FE approach for re-entrant structures under axial loading.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3