Abstract
Reduced graphene oxide/poly(pyrrol-co-thiophene) (RGO/COP), prepared by facile in-situ oxidative copolymerization, is reported as a new hybrid composite material with improved supercapacitance performance as compared to the respective homopolymers and their composites with RGO. The as-prepared hybrid materials were characterized with ultraviolet–visible (UV–Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The electrochemical behavior and energy storage properties of the materials were tested by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrostatic impedance spectroscopy (EIS) techniques in 0.5 M H2SO4. The specific capacitance (Csp) for RGO/COP calculated from the CV curve was 467 F/g at a scan rate of 10 mV/s. While the Csp calculated from the GCD was 417 F/g at a current density of 0.81 A/g. The energy density calculated was 86.4 Wh/kg with a power density of 630 W/kg. The hybrid composite exhibits good cyclic stability with 65% capacitance retention after 1000 cycles at a scan rate of 100 mV/s. The present work brings a significance development of RGO/COP composites to the electrode materials for pseudocapacitive application.
Subject
Polymers and Plastics,General Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献