Solid Polymer Electrolytes with Flexible Framework of SiO2 Nanofibers for Highly Safe Solid Lithium Batteries

Author:

Cui JinORCID,Zhou Zehao,Jia Mengyang,Chen Xin,Shi Chuan,Zhao Ning,Guo Xiangxin

Abstract

Composite electrolytes consisting of polymers and three-dimensional (3D) fillers are considered to be promising electrolytes for solid lithium batteries owing to their virtues of continuous lithium-ion pathways and good mechanical properties. In the present study, an electrolyte with polyethylene oxide–lithium (bis trifluoromethyl) sulfate–succinonitrile (PLS) and frameworks of three-dimensional SiO2 nanofibers (3D SiO2 NFs) was prepared. Taking advantage of the highly conductive interfaces between 3D SiO2 NFs and PLS, the total conductivity of the electrolyte at 30 °C was approximately 9.32 × 10−5 S cm−1. With a thickness of 27 μm and a tensile strength of 7.4 MPa, the electrolyte achieved an area specific resistance of 29.0 Ω cm2. Moreover, such a 3D configuration could homogenize the electrical field, which was beneficial for suppressing dendrite growth. Consequently, Li/LiFePO4 cells assembled with PLS and 3D SiO2 NFs (PLS/3D SiO2 NFs), which delivered an original specific capacity of 167.9 mAh g−1, only suffered 3.28% capacity degradation after 100 cycles. In particular, these cells automatically shut down when PLS was decomposed above 400 °C, and the electrodes were separated by the solid framework of 3D SiO2 NFs. Therefore, the solid lithium batteries based on composite electrolytes reported here offer high safety at elevated temperatures.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3