Author:
Wang Ziming,Cao Yiyang,Pan Decai,Hu Sen
Abstract
Natural graphite flakes possess high theoretical thermal conductivity and can notably enhance the thermal conductive property of polymeric composites. Currently, because of weak interaction between graphite flakes, it is hard to construct a three-dimensional graphite network to achieve efficient heat transfer channels. In this study, vertically aligned and interconnected graphite skeletons were prepared with graphene oxide serving as bridge and support via freeze-casting method. Three freezing temperatures were utilized, and the resulting graphite and graphene oxide network was filled in a polymeric matrix. Benefiting from the ultralow freezing temperature of −196 °C, the network and its composite occupied a more uniform and denser structure, which lead to enhanced thermal conductivity (2.15 W m−1 K−1) with high enhancement efficiency and prominent mechanical properties. It can be significantly attributed to the well oriented graphite and graphene oxide bridges between graphite flakes. This simple and effective strategy may bring opportunities to develop high-performance thermal interface materials with great potential.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献