Production of Biodegradable Palm Oil-Based Polyurethane as Potential Biomaterial for Biomedical Applications

Author:

Yeoh Fang Hoong,Lee Choy Sin,Kang Yew BengORCID,Wong Shew Fung,Cheng Sit FoonORCID,Ng Wei Seng

Abstract

Being biodegradable and biocompatible are crucial characteristics for biomaterial used for medical and biomedical applications. Vegetable oil-based polyols are known to contribute both the biodegradability and biocompatibility of polyurethanes; however, petrochemical-based polyols were often incorporated to improve the thermal and mechanical properties of polyurethane. In this work, palm oil-based polyester polyol (PPP) derived from epoxidized palm olein and glutaric acid was reacted with isophorone diisocyanate to produce an aliphatic polyurethane, without the incorporation of any commercial petrochemical-based polyol. The effects of water content and isocyanate index were investigated. The polyurethanes produced consisted of > 90% porosity with interconnected micropores and macropores (37–1700 µm) and PU 1.0 possessed tensile strength and compression stress of 111 kPa and 64 kPa. The polyurethanes with comparable thermal stability, yet susceptible to enzymatic degradation with 7–59% of mass loss after 4 weeks of treatment. The polyurethanes demonstrated superior water uptake (up to 450%) and did not induce significant changes in pH of the medium. The chemical changes of the polyurethanes after enzymatic degradation were evaluated by FTIR and TGA analyses. The polyurethanes showed cell viability of 53.43% and 80.37% after 1 and 10 day(s) of cytotoxicity test; and cell adhesion and proliferation in cell adhesion test. The polyurethanes produced demonstrated its potential as biomaterial for soft tissue engineering applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3