In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems

Author:

Röchow Eike T.,Coeler MatthiasORCID,Pospiech DorisORCID,Kobsch Oliver,Mechtaeva ElizavetaORCID,Vogel Roland,Voit BrigitteORCID,Nikolowski KristianORCID,Wolter MareikeORCID

Abstract

Solid polymer electrolytes for bipolar lithium ion batteries requiring electrochemical stability of 4.5 V vs. Li/Li+ are presented. Thus, imidazolium-containing poly(ionic liquid) (PIL) networks were prepared by crosslinking UV-photopolymerization in an in situ approach (i.e., to allow preparation directly on the electrodes used). The crosslinks in the network improve the mechanical stability of the samples, as indicated by the free-standing nature of the materials and temperature-dependent rheology measurements. The averaged mesh size calculated from rheologoical measurements varied between 1.66 nm with 10 mol% crosslinker and 4.35 nm without crosslinker. The chemical structure of the ionic liquid (IL) monomers in the network was varied to achieve the highest possible ionic conductivity. The systematic variation in three series with a number of new IL monomers offers a direct comparison of samples obtained under comparable conditions. The ionic conductivity of generation II and III PIL networks was improved by three orders of magnitude, to the range of 7.1 × 10−6 S·cm−1 at 20 °C and 2.3 × 10−4 S·cm−1 at 80 °C, compared to known poly(vinylimidazolium·TFSI) materials (generation I). The transition from linear homopolymers to networks reduces the ionic conductivity by about one order of magnitude, but allows free-standing films instead of sticky materials. The PIL networks have a much higher voltage stability than PEO with the same amount and type of conducting salt, lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). GII-PIL networks are electrochemically stable up to a potential of 4.7 V vs. Li/Li+, which is crucial for a potential application as a solid electrolyte. Cycling (cyclovoltammetry and lithium plating-stripping) experiments revealed that it is possible to conduct lithium ions through the GII-polymer networks at low currents. We concluded that the synthesized PIL networks represent suitable candidates for solid-state electrolytes in lithium ion batteries or solid-state batteries.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3