Stability of Crystal Nuclei of Poly (butylene isophthalate) Formed Near the Glass Transition Temperature

Author:

Quattrosoldi Silvia,Lotti NadiaORCID,Soccio MichelinaORCID,Schick ChristophORCID,Androsch René

Abstract

Tammann’s two-stage crystal-nuclei-development method is applied for analysis of the thermal stability of homogenously formed crystal nuclei of poly(butylene isophthalate) (PBI) as well as their possible reorganization on transferring them to the growth temperature, using fast scanning chip calorimetry. Crystal nuclei were formed at 50 °C, that is, at a temperature only slightly higher than the glass transition temperature, and developed to crystals within a pre-defined time at the growth temperature of 85 °C. The number of nuclei, overcritical at the growth temperature, was detected as a function of the transfer-conditions (maximum temperature, heating rate) by evaluation of the developed crystal fraction. For different size-distributions of crystal nuclei, as controlled by the nucleation time, there is detected distinct reduction of the nuclei number on heating to maximum temperatures higher than about 90 to 110 °C, with the latter value holding for longer nucleation time. Longer nucleation allows for both increasing the absolute nuclei number and generation of an increased fraction of larger nuclei. Heating at 1000 K/s to 140–150 °C causes “melting” of even the most stable nuclei. While direct transfer of crystal nuclei from the nucleation temperature (50 °C) to the growth temperature (85 °C) reveals negligible effect of the transfer-heating rate, in-between heating to higher temperatures is connected with distinct nuclei-reorganization above 85 °C on heating slower than 1000–10.000 K/s. The performed study not only provides specific valuable information about the thermal characteristics of crystal nuclei of PBI but also highlights the importance of proper design of Tammann’s nuclei development experiment for analysis of nuclei numbers. With the evaluation of critical rates of temperature-change for suppression of non-isothermal formation of both nuclei and crystals, the kinetics of crystallization of the slow crystallizing PBI is further quantified.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3