Abstract
High-voltage direct-current (HVDC) dry bushing capacitor-core insulation is composed of epoxy resin-impregnated insulating paper (RIP). To improve the thermal conductivity, breakdown strength, and space charge characteristics of RIP, 0.1 wt % nano-cellulose fiber (CNF)-modified RIP (CNF/RIP), 2.5–30 wt % hexagonal boron nitride (h-BN)-modified RIP (h-BN/RIP), and 2.5–30 wt % h-BN + 0.1 wt % CNF-modified RIP (h-BN + 0.1 wt % CNF/RIP) were prepared. Scanning electron microscopy (SEM) was implemented; the thermal conductivity, DC conductivity, DC breakdown strength, and space charge characteristics were tested. The maximum thermal conductivity of h-BN + 0.1 wt % CNF/RIP was 0.376 W/m.K with a h-BN content of 30 wt %. The thermal conductivity was 85.2% higher than that of unmodified RIP. The breakdown strength and charge suppression were the best in the case of 10 wt % h-BN + 0.1 wt % CNF/RIP. The maximum breakdown strength was 11.2% higher than that of unmodified RIP. These results can play a significant role in the research and development of insulation materials for HVDC dry bushing.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献