A Facile Strategy to Fabricate Antistatic Polyamide 1012/Multi-Walled Carbon Nanotube Pipes for Fuel Delivery Applications

Author:

Li Wanli,Wang Lili,Dong XiaORCID,Wang Dujin

Abstract

Developing antistatic long chain polyamide (LCPA) resins and fabricating the corresponding fuel pipes are challenges but necessary. Herein, a facile but effective strategy was put forward to fabricate LCPA resins with a superior conductivity, meeting the requirements of electrostatic sub-conductors. The strategy was based on, first, the incorporation of a large amount (15 wt%) of multi-walled carbon nanotubes (MWCNTs) into a polyamide 1012 (PA1012) matrix as a master batch, which formed a dense conductive network. Subsequently, it was diluted with PA1012 granules to produce base resins, and the reprocessed nanocomposites with a critical content of MWCNTs (3 wt%) could generate an effectively interconnected conductive network, with sparse and thinning features. Using the base resins, fuel pipes for automobiles, petrol stations and high pressure applications were successfully fabricated, where the thin conductive network was transformed into a thick one due to external field-induced re-agglomeration of MWCNTs. In this way, the obtained fuel pipes combined excellent conductive and barrier properties, and mechanical properties at high and low temperatures. These comprehensive properties also arose from the uniform dispersion of MWCNTs in an LCPA matrix, even without coupling agents; the attractive interaction between MWCNTs and the polyamide chains contributed to their strong interface adhesion. Thus, this research provides a versatile approach to fabricating antistatic LCPA resins, which will certainly extend their application to vehicle fuel systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3