Semi-Natural Superabsorbents Based on Starch-g-poly(acrylic acid): Modification, Synthesis and Application

Author:

Czarnecka ElżbietaORCID,Nowaczyk JacekORCID

Abstract

Biopolymer-based superabsorbent polymers (SAPs) are being synthesized and investigated as a biodegradable alternative for an entirely synthetic SAPs, particularly those based on acrylic acid and its derivatives. This article focuses on the chemical modification of starch (S), and synthesis of new potentially biodegradable polymers using acrylic acid (AA) as side chain monomer and crosslinking mediator together with N,N’-methylenebisacrylamide (MBA). The graft co-polymerization was initiated by ceric ammonium nitrate (CAN) or potassium persulfate (KPS), leading to different reaction mechanisms. For each of the initiators, three different synthetic routes were applied. The structures of new bio-based SAPs were characterized by means of IR spectroscopy. Thermogravimetric measurements were made to test the thermal stability, and morphology of the samples were examined using scanning electron microscopy (SEM). Physico-chemical measurements were performed to characterize properties of new materials such as swelling characteristics. The water absorption capacity of resulting hydrogels was measured in distilled water and 0.9% NaCl solution.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference54 articles.

1. M Inteligence Global Superabsorbent Polymers Market (Study Period: 2016–2024)http://dln.jaipuria.ac.in:8080/jspui/bitstream/123456789/2836/1/Global Super Absorbent Polymers %28SAP%29 Market - Growth%2C Trends%2C and Forecast %282016 - 2024%29.pdf

2. Radiation formation of hydrogels for biomedical purposes. Some remarks and comments

3. Hydrogels and their medical applications

4. Hydrogels for tissue engineering: scaffold design variables and applications

5. Bioactive hydrogels for bone regeneration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3