The Difference in Molecular Orientation and Interphase Structure of SiO2/Shape Memory Polyurethane in Original, Programmed and Recovered States during Shape Memory Process

Author:

Shi Shuang,Xu Tao,Wang DaweiORCID,Oeser Markus

Abstract

In order to further understand the shape memory mechanism of a silicon dioxide/shape memory polyurethane (SiO2/SMPU) composite, the thermodynamic properties and shape memory behaviors of prepared SiO2/SMPU were characterized. Dynamic changes in the molecular orientation and interphase structures of SiO2/SMPU during a shape memory cycle were then discussed according to the small angle X-ray scattering theory, Guinier’s law, Porod approximation, and fractal dimension theorem. In this paper, a dynamic mechanical analyzer (DMA) helped to determine the glass transition start temperature (Tg) by taking the onset point of the sigmoidal change in the storage modulus, while transition temperature (Ttrans) was defined by the peak of tan δ, then the test and the calculated results indicated that the Tg of SiO2/SMPU was 50.4 °C, and the Ttrans of SiO2/SMPU was 72.18 °C. SiO2/SMPU showed good shape memory performance. The programmed SiO2/SMPU showed quite obvious microphase separation and molecular orientation. Large-size sheets and long-period structures were formed in the programmed SiO2/SMPU, which increases the electron density difference. Furthermore, some hard segments had been rearranged, and their gyration radii decreased. In addition, several defects formed at the interfaces of SiO2/SMPU, which caused the generation of space charges, thus leading to local electron density fluctuations. The blurred interphase structure and the intermediate layer formed in the programmed SiO2/SMPU and there was evident crystal damage and chemical bond breakage in the recovered SiO2/SMPU. Finally, the original and recovered SiO2/SMPU samples belong to the surface fractal system, but the programmed sample belongs to the mass fractal and reforms two-phase structures. This study provides an insight into the shape memory mechanism of the SiO2/SMPU composite.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Doctorate Fellowship Foundation of Nanjing Forestry University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3