Author:
Lee Seo Yeon,Shrestha Sita,Shrestha Bishnu Kumar,Park Chan Hee,Kim Cheol Sang
Abstract
Herein, we describe precisely a covalent modification of pure magnesium (Mg) surface and its application to induce in vitro osteogenic differentiation. The new concept of a chemical bonding method is proposed for developing stable chemical bonds on the Mg surface through the serial assembly of bioactive additives that include ascorbic acid (AA) and bovine serum albumin (BSA). We studied both the physicochemical and electrochemical properties using scanning electron microscopy and other techniques to confirm how the covalent bonding of BSA on Mg can, after coating, significantly enhance the chemical stability of the substrate. The modified Mg-OH-AA-BSA exhibits better anti-corrosion behavior with high corrosion potential (Ecorr = −0.96 V) and low corrosion current density (Icorr = 0.2 µA cm−2) as compared to the pure Mg (Ecorr = −1.46 V, Icorr = 10.42 µA cm−2). The outer layer of BSA on Mg protects the fast degradation rate of Mg, which is the consequence of the strong chemicals bonds between amine groups on BSA with carboxylic groups on AA as the possible mechanism of peptide bonds. Collectively, the results suggest that the surface-modified Mg provides a strong bio-interface, and enhances the proliferation and differentiation of pre-osteoblast (MC3T3-E1) cells through a protein–lipid interaction. We therefore conclude that the technique we describe provides a cost-effective and scalable way to generate chemically stable Mg surface that inherits a biological advantage in orthopedic and dental implants in clinical applications.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献