Abstract
Feathers, which contain >90% keratin, are valuable natural protein resources. The aim of this study is to prepare antimicrobial feather keratin (FK)-based nanofibers by incorporating silver nanoparticles (AgNPs). A series of AgNPs-embedded feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) (FK/PVA/PEO) composite nanofibers with varying amounts of AgNPs content were fabricated by electrospinning. Their morphology, crystallinity, thermal stability, tensile property, and antibacterial activity were systematically investigated. The average diameters of composite nanofibers gradually decreased with increases in the amount of AgNPs. The crystallinity, thermal stability, and antibacterial activity of FK/PVA/PEO nanofibers were enhanced by embedding AgNPs. When embedded with 1.2% AgNPs, both the tensile strength and elongation-at-break reached the highest level. This work has the potential to expand the application of FK-based nanofibers in the biomaterial field.
Subject
Polymers and Plastics,General Chemistry
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献