Abstract
The effect of TiO2 nanoparticles on the photophysical properties of ternary conjugated polymer (CP) blends of poly(9,9-dioctylfluorene-2,7-diyl) (PFO), poly 9,9-dioctylfluorene-alt-benzothiadiazole (F8BT) and poly(2-methoxy-5(2-ethylhexyl)-1,4 -phenylenevinylene (MEH-PPV) thin films was investigated. This ternary blend used a fixed amount of PFO as the donor with MEH-PPV and F8BT in various ratios as the acceptors. The solution-blending method and the spin-coating technique were used to prepare the blends and the thin films, respectively. Through efficient Förster Resonance Energy Transfer (FRET), the desired white emission was achieved with PFO/0.3 wt.% F8BT/0.5 wt.% MEH-PPV ternary blend thin film. Additions of nanoparticles up to 10 wt.% dramatically intensified the white emission which then dimmed at higher contents due to agglomerations. The current density–voltage characteristics of the nanocomposite thin films exhibited dependency on the content and distributions of the nanoparticles. Finally, a possible underlying mechanism for the intensification of emission is proposed.
Funder
Deanship of Scientific Research, King Saud University
Universiti Kebangsaan Malaysia
Subject
Polymers and Plastics,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献