Abstract
Nucleobase-containing polymers are an emerging class of building blocks for the self-assembly of nanoobjects with promising applications in nanomedicine and biology. Here we present a macromolecular engineering approach to design nucleobase-containing polypeptide polymers incorporating thymine that further self-assemble in nanomaterials. Diblock and triblock copolypeptide polymers were prepared using sequential ring-opening polymerization of γ-Benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) and γ-Propargyl-l-glutamate N-carboxyanhydride (PLG-NCA), followed by an efficient copper(I)-catalyzed azide alkyne cycloaddition (CuAAc) functionalization with thymidine monophosphate. Resulting amphiphilic copolymers were able to spontaneously form nanoobjects in aqueous solutions avoiding a pre-solubilization step with an organic solvent. Upon self-assembly, light scattering measurements and transmission electron microscopy (TEM) revealed the impact of the architecture (diblock versus triblock) on the morphology of the resulted nanoassemblies. Interestingly, the nucleobase-containing nanoobjects displayed free thymine units in the shell that were found available for further DNA-binding.
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献