Thermoresponsive Poly(glycidyl ether) Brush Coatings on Various Tissue Culture Substrates—How Block Copolymer Design and Substrate Material Govern Self-Assembly and Phase Transition

Author:

Stöbener Daniel DavidORCID,Weinhart Marie

Abstract

Thermoresponsive poly(glycidyl ether) brushes can be grafted to applied tissue culture substrates and used for the fabrication of primary human cell sheets. The self-assembly of such brushes is achieved via the directed physical adsorption and subsequent UV immobilization of block copolymers equipped with a short, photo-reactive benzophenone-based anchor block. Depending on the chemistry and hydrophobicity of the benzophenone anchor, we demonstrate that such block copolymers exhibit distinct thermoresponsive properties and aggregation behaviors in water. Independent on the block copolymer composition, we developed a versatile grafting-to process which allows the fabrication of poly(glycidyl ether) brushes on various tissue culture substrates from dilute aqueous-ethanolic solution. The viability of this process crucially depends on the chemistry and hydrophobicity of, both, benzophenone-based anchor block and substrate material. Utilizing these insights, we were able to manufacture thermoresponsive poly(glycidyl ether) brushes on moderately hydrophobic polystyrene and polycarbonate as well as on rather hydrophilic polyethylene terephthalate and tissue culture-treated polystyrene substrates. We further show that the temperature-dependent switchability of the brush coatings is not only dependent on the cloud point temperature of the block copolymers, but also markedly governed by the hydrophobicity of the surface-bound benzophenone anchor and the subjacent substrate material. Our findings demonstrate that the design of amphiphilic thermoresponsive block copolymers is crucial for their phase transition characteristics in solution and on surfaces.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3