CD133 Targeted PVP/PMMA Microparticle Incorporating Levamisole for the Treatment of Ovarian Cancer

Author:

Wang Yu-Chi,Bai Meng-Yi,Yeh Ying-Ting,Tang Sung-Ling,Yu Mu-Hsien

Abstract

Levamisole (LEVA) is used to treat worm infections, but it can also inhibit cancer cell growth by inhibiting the aldehyde dehydrogenase pathway. Therefore, here, we developed a drug carrier targeting CD133, a biomarker overexpressed in ovarian cancer cells. The particle structure and cytotoxicity of the prepared LEVA-containing particles—called LEVA/PVP/PMMA microparticles (MPs) (because it used matrix material polyvinylpyrrolidone (PVP) and poly(methylmethacrylate) (PMMA))—were investigated in the ovarian cancer cell lines SKOV-3 and CP70. The particle size of the MPs was determined to be 1.0–1.5 µm and to be monodispersed. The hydrophilic property of PVP created a porous MP surface after the MPs were soaked in water for 20 min, which aided the leaching of the hydrophilic LEVA out of the MPs. The encapsulation efficiency of LEVA/PVP/PMMA MPs could reach up to 20%. Free-form LEVA released 50% of drugs in <1 h and 90% of drugs in 1 day, whereas the drug release rate of LEVA/PVP/PMMA MPs was much slower; 50% released in 4 h and only 70% of drugs released in 1 day. In the in vitro cell model test, 5 mM free-form LEVA and 0.1 g/mL CD133 targeted LEVA/PVP/PMMA MPs reduced SKOV-3 cell viability by 60%; 0.1 g/mL LEVA/PVP/PMMA MPs was equivalent to a similar dosage of the free drug. In addition, the cytotoxicity of CD133-conjugated LEVA/PVP/PMMA MPs shows a different cytotoxicity response toward cell lines. For SKOV-3 cells, treatment with free-form LEVA or CD133-conjugated LEVA/PVP/PMMA MPs exerted dose-dependent cytotoxic effects on SKOV-3 cell viability. However, CD133-conjugated LEVA/PVP/PMMA MPs demonstrated no significant dose-dependent cytotoxic efficacy toward CP70 cells.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3