Isoporous Membranes from Novel Polystyrene-b-poly(4-vinylpyridine)-b-poly(solketal methacrylate) (PS-b-P4VP-b-PSMA) Triblock Terpolymers and Their Post-Modification

Author:

Saleem Sarah,Rangou Sofia,Abetz Clarissa,Filiz Volkan,Abetz VolkerORCID

Abstract

In this paper, the formation of nanostructured triblock terpolymer polystyrene-b-poly(4-vinylpyridine)-b-poly(solketal methacrylate) (PS-b-P4VP-b-PSMA), polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA) membranes via block copolymer self-assembly followed by non-solvent-induced phase separation (SNIPS) is demonstrated. An increase in the hydrophilicity was observed after treatment of non-charged isoporous membranes from PS-b-P4VP-b-PSMA, through acidic hydrolysis of the hydrophobic poly(solketal methacrylate) PSMA block into a hydrophilic poly(glyceryl methacrylate) PGMA block, which contains two neighbored hydroxyl (–OH) groups per repeating unit. For the first time, PS-b-P4VP-b-PSMA triblock terpolymers with varying compositions were successfully synthesized by sequential living anionic polymerization. Composite membranes of PS-b-P4VP-b-PSMA and PS-b-P4VP-b-PGMA triblock terpolymers with ordered hexagonally packed cylindrical pores were developed. The morphology of the membranes was studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM). PS-b-P4VP-b-PSMA triblock terpolymer membranes were further treated with acid (1 M HCl) to get polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA). Notably, the pristine porous membrane structure could be maintained even after acidic hydrolysis. It was found that membranes containing hydroxyl groups (PS-b-P4VP-b-PGMA) show a stable and higher water permeance than membranes without hydroxyl groups (PS-b-P4VP-b-PSMA), what is due to the increase in hydrophilicity. The membrane properties were analyzed further by contact angle, protein retention, and adsorption measurements.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3