Abstract
Dynamic crosslinking networks based on Diels–Alder (DA) chemistry and ionic interactions were introduced to maleic anhydride modified ethylene-vinyl acetate copolymer (mEVA) via in situ melt processing. The dual dynamic crosslinking networks were characterized by temperature-dependent FTIR, and the effects on the shape memory properties of mEVA were evaluated with dynamic mechanical thermal analysis and cyclic tensile testing. A crosslinking density was achieved at 2.36 × 10−4 mol·cm−3 for DA-crosslinked mEVA; as a result, the stress at 100% extension was increased from 3.8 to 5.6 MPa, and tensile strength and elongation at break were kept as high as 30.3 MPa and 486%, respectively. The further introduction of 10 wt % zinc methacrylate increased the dynamic crosslinking density to 3.74 × 10−4 mol·cm−3 and the stress at 100% extension to 9.0 MPa, while providing a tensile strength of 28.4 MPa and strain at break of 308%. The combination of reversible DA covalent crosslinking and ionic network in mEVA enabled a fixing ratio of 76.4% and recovery ratio of 99.4%, exhibiting an enhanced shape memory performance, especially at higher temperatures. The enhanced shape memory and mechanical performance of the dual crosslinked mEVA showed promising reprocessing and recycling abilities of the end-of-life products in comparison to traditional peroxide initiated covalent crosslinked counterparts.
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献