Electromagnetic Interference Shield of Highly Thermal-Conducting, Light-Weight, and Flexible Electrospun Nylon 66 Nanofiber-Silver Multi-Layer Film

Author:

Kim Jaeyeon,Lee Suyeong,Kim Changho,Park Yeongcheol,Kim Mi-Hyun,Seol Jae Hun

Abstract

A light-weight, flexible electromagnetic interference (EMI) shield was prepared by creating a layer-structured metal-polymer composite film consisting of electrospun nylon 66 nanofibers with silver films. The EMI shielding effectiveness (SE), specific SE, and absolute SE of the composite were as high as 60.6 dB, 67.9 dB cm3/g, and 6792 dB cm2/g in the X- and Ku-bands, respectively. Numerical and analytical calculations suggest that the energy of EM waves is predominantly absorbed by inter-layer multiple reflections. Because the absorbed EM energy is dissipated as heat, the thermal conductivity of absorption-dominant EMI shields is highly significant. Measured thermal conductivity of the composite was found to be 4.17 Wm−1K−1 at room temperature, which is higher than that of bulk nylon 66 by a factor of 16.7. The morphology and crystallinity of the composite were examined using scanning electron microscopy and differential scanning calorimetry, respectively. The enhancement of thermal conductivity was attributed to an increase in crystallinity of the nanofibers, which occurred during the electrospinning and subsequent hot pressing, and to the high thermal conductivity of the deposited silver films. The contribution of each fabrication process to the increase in thermal conductivity was investigated by measuring the thermal conductivity values after each fabrication process.

Funder

Ministry of Science, ICT and Future Planning

Gwangju Institute of Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference91 articles.

1. Interference Control;Mordiguine,1984

2. Electromagnetic Compatibility Handbook;Violette,1987

3. Carcinogenicity of radiofrequency electromagnetic fields

4. The Influence of Electromagnetic Pollution on Living Organisms: Historical Trends and Forecasting Changes

5. Electromagnetic Radiation and Human Health: A Review of Sources and Effects;Zamanian;High Freq. Electron.,2005

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3