Deformation Properties of Concentrated Metal-in-Polymer Suspensions under Superimposed Compression and Shear

Author:

Malkin Alexander Ya.,Kulichikhin Valery G.,Mityukov Anton V.ORCID,Kotomin Sergey V.

Abstract

Concentrated metal-in-polymer suspensions (55 vol.% and 60 vol.%) of aluminum powder dispersed in low molecular weight polyethylene glycol) demonstrate elastoplastic properties under compression and shear. The rheological behavior of concentrated suspensions was studied in a rotational rheometer with uniaxial compression (squeezing), as well as shearing superimposed on compression. At a high metal concentration, the elasticity of the material strongly increases under strain, compared with the plasticity. The elastic compression modulus increases with the growth of normal stress. Changes in the shear modulus depend on both normal and shear stresses. At a low compression force, the shear modulus is only slightly dependent on the shear stress. However, high compression stress leads to a decrease in the shear modulus by several orders with the growth of the shear stress. The decrease in the modulus seems to be rather unusual for compacted matter. This phenomenon could be explained by the rearrangement of the specific organization of the suspension under compression, leading to the creation of inhomogeneous structures and their displacement at flow, accompanied by wall slip. The obtained set of rheological characteristics of highly loaded metal-in-polymer suspensions is the basis for understanding the behavior of such systems in the powder injection molding process.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3