Grafting Poly(Methyl Methacrylate) (PMMA) from Cork via Atom Transfer Radical Polymerization (ATRP) towards Higher Quality of Three-Dimensional (3D) Printed PMMA/Cork-g-PMMA Materials

Author:

Lacerda Paula S. S.ORCID,Gama NunoORCID,Freire Carmen S. R.,Silvestre Armando J. D.ORCID,Barros-Timmons AnaORCID

Abstract

Cork is a unique material and its by-products are attracting an ever-growing interest for preparing new materials in an attempt to extend the outstanding properties of cork toward innovative and high value applications. Yet, the miscibility of cork particles with thermoplastic matrices is not easy due to its low density and surface properties. Here, cork is functionalized with poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP) to yield cork grafted with PMMA chains particles (cork-g-PMMA). Both the ATRP macroinitiator and the cork-g-PMMA obtained are fully characterized by Fourier-transform infrared spectroscopy (FT-IR), 13C cross-polarized magic-angle spinning solid-state nuclear magnetic resonance (13C CP/MAS solid state NMR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) and thermogravimetric analyses (TGA). The functionalized cork particles are then blended with commercial PMMA to afford cork-g-PMMA/PMMA. To compare, cork also is mixed with PMMA and the ensuing cork/PMMA sample and its morphology, thermal, and mechanical properties are compared with those of cork-g-PMMA/PMMA and commercial PMMA. The cork surface modification via ATRP of the methyl methacrylate (MMA) yields better dispersion in the matrix. Consequently, a blend with enhanced mechanical performance, higher thermal stability, and a higher melt flow index (MFI) is obtained when compared to the blend prepared using unmodified particles. The similarity of the MFI of cork-g-PMMA/PMMA to that of PMMA suggests good printability. Indeed, a three-dimensional (3D) printed specimen is obtained confirming that grafting using ATRP is a promising route for the preparation of high quality 3D printed products.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3