Cost-Effective Potentiometric Platforms Modified with Multi-Walled Carbon Nanotubes (MWCNTs) and Based on Imprinted Receptors for Fluvoxamine Assessment

Author:

M. Hashem Heba,S. M. Hassan Saad,H. Kamel AymanORCID,Amr Abd El-Galil E.ORCID,AbdelBary E. M.

Abstract

A simple, efficient and reliable analytical method was developed and used for the determination of the fluvoxamine drug (FLV) in pharmaceutical preparations and biological fluids. The method is based on the cost-effective screen-printed platform for the potential transduction of the drug. Host-tailored molecular imprinting polymer (MIP) was integrated with the potentiometric platform as a recognition receptor, in which FLV, acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA) and acetonitrile were used as a template, functional monomer, cross-linker, and solvent, respectively. MIP particles were dispersed in plasticized poly (vinyl chloride) (PVC) and the membrane was drop-casted on carbon screen-printed electrode. The MIP, in addition to non-imprinted polymers (NIP), was characterized and the binding experiment revealed high affinity and adsorption capacity of MIP towards FLV. The proposed sensor displayed near-Nernstian cationic slope of 55.0 ± 0.8 mV/decade (r2 = 0.999) with a low detection limit of 4.8 × 10−6 mol/L over a wide pH range (3.0–8.5). The electrochemical features of the proposed sensors including electrochemical impedance spectroscopy (EIS) and chronopotentiometry measurements (CP) in the presence of multi-walled carbon nanotubes (MWCNTs) as a solid contact transducer were also investigated. The applications of the proposed sensor for the determination of FLV in different dosage forms with recovery values (98.8%–101.9%) and (97.4%–101.1%), respectively compared with the reference HPLC method with acceptedFandt-student tests values at the 95% confidence level.

Funder

King Saud University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3