Thermodynamic Properties and State Diagram of Gum Ghatti-Based Edible Films: Effects of Glycerol and Nisin

Author:

Zhang Pingping,Zhao Ya,Zhang Xin,Zhu Lanlan,Fang ZhongxiangORCID,Shi Qilong

Abstract

In this present study, the thermodynamic and thermal properties of glycerol and nisin-incorporated gum ghatti (GG, Anogeissus latifolia)-based films were determined. The films exhibited type III isotherm behaviors. Moisture content (MC) of films was increased with increasing water activity (aw) and decreased with higher temperature. The incorporation of glycerol and nisin increased the sorption ability of GG films. The net isosteric heat of adsorption (qst) and differential entropy (Sd) were decreased with increasing MC, showing an exponential negative correlation between them. Spreading pressure (φ) was increased with increasing aw, but decreased with higher temperature. This incorporation of glycerol and nisin increased the qst, Sd and φ of the GG films. The sorption behaviors were enthalpy-driven and non-spontaneous processes. The glass transition temperature (Tg), critical MC and aw of the films were decreased, and increased respectively with the incorporation of glycerol and nisin. This work provides a theoretical basis for the application of edible films in fresh food preservation.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3