Abstract
In this article, the effect of polyallylamine (PAA) on the structure and catalytic characteristics of alcohol dehydrogenase (ADH) was studied. For this research, we used methods of stationary kinetics and fluorescence spectroscopy. It has been shown that PAA non-competitively inhibits ADH activity while preserving its quaternary structure. It was established that 0.1 M ammonium sulfate removes the inhibitory effect of PAA on ADH, which is explained by the binding of sulfate anion (NH4)2SO4 with polyallylamine amino groups. As a result, the rigidity of the polymer chain increases and the ability to bind to the active loop of the enzyme increases. It is also shown that sodium chloride removes the inhibitory effect of PAA on ADH due to an electrostatic screening of the enzyme from polyelectrolyte. The method of encapsulating ADH in polyelectrolyte microcapsules was adapted to the structure and properties of the enzyme molecule. It was found that the best for ADH is its encapsulation by adsorption into microcapsules already formed on CaCO3 particles. It was shown that the affinity constant of encapsulated alcohol dehydrogenase to the substrate is 1.7 times lower than that of the native enzyme. When studying the affinity constant of ADH in a complex with PAA to ethanol, the effect of noncompetitive inhibition of the enzyme by polyelectrolyte was observed.
Subject
Polymers and Plastics,General Chemistry
Reference29 articles.
1. Enzymes as reagents in clinical chemistry;Price;Philos. Trans. R. Soc. Lond. B. Biol. Sci.,1983
2. Clinical laboratory medicine;McClatchey,2002
3. Lactate dehydrogenase in an interpolyelectrolyte complex. Function and stability;Bobreshova;Biofizika,1999
4. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes
5. Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献