Influence of Heating Rate on the Structure and Mechanical Properties of Aromatic BPDA–PDA Polyimide Fiber

Author:

Yang Wenke,Liu Fangfang,Chen Hongxiang,Dai Xuemin,Liu Wei,Qiu Xuepeng,Ji Xiangling

Abstract

Aromatic polyimide fibers (PI) are usually produced in two steps. The precursor fibers of polyamic acid (PAA) are fabricated first, and then the fabricated fibers are converted into PI fibers through thermal treatment. In the second step (thermal treatment), the mechanical properties of the obtained PI fibers are remarkably affected. Here, the PAA fibers derived from 3,3’,4,4’-biphenyltetra-carboxylic dianhydride and p-phenylenediamine are fabricated by a dry-jet wet-spinning method. Then, the PI fibers are prepared by heating PAA fibers from room temperature to 300, 350 and 400 °C under different heating rates, ranging from 1 °C/min to 80 °C/min. When the heating rate is low, the crystallization lags behind the imidization process, and begins only when the imidization degree reaches a high level. As the heating rate increases, the crystallization tends to occur simultaneously with the imidization process, and the degree of crystallinity of the PI fibers also greatly increases. Our findings suggest that a high heating rate causes the polymer chains to undergo high mobility during thermal treatment. The tensile modulus of the PI fiber further demonstrates a high dependence on the heating rate. Moreover, a short annealing process after treatment proves to be efficient in releasing residual stress and improving tensile strength.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3