Phase Structure Recording in a Nematic Side-Chain Liquid-Crystalline Polymer

Author:

Budagovsky IvanORCID,Kuznetsov Aleksey,Shvetsov SergeyORCID,Smayev Mikhail,Zolot’ko Alexander,Bobrovsky Alexey,Boiko Natalia,Shibaev Valery

Abstract

Dye-doped nematic side-chain liquid-crystalline polymers possess extraordinary large optical nonlinearity and ability to store the induced orientational deformations in a glassy state, which makes them a very promising material for photonic applications. In this study, the phase structures were generated and recorded in the bulk of a 50-μm layer of a nematic liquid-crystalline side-chain polymer, containing polyacrylate backbone, spacer having five methylene groups, and phenyl benzoate mesogenic fragment. The polymer was doped with KD-1 azodye. The director field deformations induced by the light beam close to the TEM01 mode were studied for different geometries of light–polymer interaction. The phase modulation depth of 2π was obtained for the 18-μm spacing between intensity peaks. The experimental data were analyzed based on the elastic continuum theory of nematics. The possibility to induce and record positive and negative microlenses in the polymer bulk was shown experimentally.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference32 articles.

1. Electrooptic Effects in Liquid Crystal Materials;Blinov,1994

2. Orientational optical nonlinearity of liquid crystals

3. The effect of an optical-field on the nematic phase of the liquid-crystal OCBP;Zolotko;JETP Lett.,1980

4. Temperature dependence of the optical Fréedericksz transition in dyed nematic liquid crystals

5. Photoinduced molecular reorientation of absorbing liquid crystals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3