Graphene Oxide Composite for Selective Recognition, Capturing, Photothermal Killing of Bacteria over Mammalian Cells

Author:

Ma Gang,Qi JunjieORCID,Cui Qifan,Bao Xueying,Gao Dong,Xing Chengfen

Abstract

The multifunctional photothermal therapy (PTT) platform with the ability to selectively kill bacteria over mammalian cells has received widespread attention recently. Herein, we prepared graphene oxide-amino(polyethyleneglycol) (GO-PEG-NH2) while using the hydrophobic interaction between heptadecyl end groups of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)] (DSPE-PEG-NH2) and graphene oxide (GO). Based on GO-PEG-NH2, the versatile PTT system was constructed with simultaneous selective recognition, capturing, and photothermal killing of bacteria. When the cells undergo bacterial infection, owing to the poly(ethylene glycol) (PEG) chains and positively charged amino groups, GO-PEG-NH2 can specifically recognize and capture bacteria in the presence of cells. Meanwhile, the stable photothermal performance of GO-PEG-NH2 enables the captured bacteria to be efficiently photothermally ablated upon the irradiation of 808 nm laser. Besides, the GO-PEG-NH2 is highly stable in various biological media and it exhibits low cytotoxicity, suggesting that it holds great promise for biological applications. This work provides new insight into graphene-based materials as a PTT agent for the development of new therapeutic platforms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3