Using Epoxidized Solution Polymerized Styrene-Butadiene Rubbers (ESSBRs) as Coupling Agents to Modify Silica without Volatile Organic Compounds

Author:

Liu Chaohao,Guo Mingming,Zhai Xiaobo,Ye Xin,Zhang Liqun

Abstract

Rubber used in tire is usually strengthened by nanofiller, and the most popular nanofiller for tire tread rubber is nano silica, which can not only strengthen rubber but also lower the tire rolling resistance to reduce fuel consumption. However, silica particles are difficult to disperse in the rubber matrix because of the abundant silicon hydroxyl on their surface. Silane coupling agents are always used to modify silica and improve their dispersion, but a large number of volatile organic compounds (VOCs) are emitted during the manufacturing of the nanosilica/rubber composites because of the condensation reaction between silane coupling agents and silicon hydroxyl on the surface of silica. Those VOCs will do great harm to the environment and the workers’ health. In this work, epoxidized solution polymerized styrene-butadiene rubbers (ESSBR) with different epoxy degrees were prepared and used as macromolecular coupling agents aimed at fully eliminating VOCs. Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) analyses verified that the different ESSBRs were successfully synthesized from solution polymerized styrene-butadiene rubbers (SSBR). With the help of the reaction between epoxy groups and silicon hydroxyl without any VOC emission, nanosilica can be well dispersed in the rubber matrix when SSBR partially replaced by ESSBR which was proved by Payne effect and TEM analysis. Dynamic and static mechanical testing demonstrated that silica/ESSBR/SSBR/BR nanocomposites have better performance and no VOC emission compared with Bis-(γ-triethoxysilylpropyl)-disulfide (TESPD) modified silica/rubber nanocomposites. ESSBR is very hopeful to replace traditional coupling agent TESPD to get high properties silica/rubber nanocomposites with no VOCs emission.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3