Enhancement of Flame Retardancy of Colorless and Transparent Semi-Alicyclic Polyimide Film from Hydrogenated-BPDA and 4,4′-oxydianiline via the Incorporation of Phosphazene Oligomer

Author:

Wu Xiao,Jiang Ganglan,Zhang Yan,Wu Lin,Jia Yanjiang,Tan Yaoyao,Liu JingangORCID,Zhang Xiumin

Abstract

Enhancement of flame retardancy of a colorless and transparent semi-alicyclic polyimide (PI) film was carried out by the incorporation of phosphazene (PPZ) flame retardant (FR). For this purpose, PI-1 matrix was first synthesized from hydrogenated 3,3′,4,4′-biphenyltetracarboxylic dianhydride (HBPDA) and 4,4′-oxydianiline (ODA). The soluble PI-1 resin was dissolved in N,N-dimethylacetamide (DMAc) to afford the PI-1 solution, which was then physically blended with PPZ FR with the loading amounts in the range of 0–25 wt.%. The PPZ FR exhibited good miscibility with the PI-1 matrix when its proportion was lower than 10 wt.% in the composite films. PI-3 composite film with the PPZ loading of 10 wt.% showed an optical transmittance of 75% at the wavelength of 450 nm with a thickness of 50 μm. More importantly, PI-3 exhibited a flame retardancy class of UL 94 VTM-0 and reduced total heat release (THR), heat release rate (HRR), smoke production rate (SPR), and rate of smoke release (RSR) values during combustion compared with the original PI-1 film. In addition, PI-3 film had a limiting oxygen index (LOI) of 30.9%, which is much higher than that of PI-1 matrix (LOI: 20.1%). Finally, incorporation of PPZ FR decreased the thermal stability of the PI films. The 10% weight loss temperature (T10%) and the glass transition temperature (Tg) of the PI-3 film were 411.6 °C and 227.4 °C, respectively, which were lower than those of the PI-1 matrix (T10%: 487.3 °C; Tg: 260.6 °C)

Funder

Key Technology Research and Development Program of Shandong

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3