Abstract
When petroleum hydrocarbon pollutants enter the ocean, besides the migration under hydrodynamic constraints, their degradation due to environmental conditions also occurs. However, available observations are usually spatiotemporally disperse, which makes it difficult to study the degradation characteristics of pollutants. In this paper, a model of transport and degradation is used to estimate the degradation coefficient of petroleum hydrocarbon pollutants with the adjoint method. Firstly, the results of a comprehensive physical–chemical–biological test of the degradation of petroleum hydrocarbon pollutants in Laizhou Bay provide a reference for setting the degradation coefficient on the time scale. In ideal twin experiments, the mean absolute errors between observations and simulation results obtain an obvious reduction, and the given distributions can be inverted effectively, demonstrating the feasibility of the model. In a practical experiment, the actual distribution of petroleum hydrocarbon pollutants in Laizhou Bay is simulated, and the simulation results are in good agreement with the observed ones. Meanwhile, the spatial distribution of the degradation coefficient is inverted, making the simulation results closer to the actual observations.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shandong Provincial Natural Science Foundation
Innovation and Strengthen Project of Guangdong Province
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献