Remote Sensing-Based Automatic Detection of Shoreline Position: A Case Study in Apulia Region

Author:

Spinosa AnnaORCID,Ziemba AlexORCID,Saponieri AlessandraORCID,Damiani LeonardoORCID,El Serafy Ghada

Abstract

Remote sensing and satellite imagery have become commonplace in efforts to monitor and model various biological and physical characteristics of the Earth. The land/water interface is a continually evolving landscape of high scientific and societal interest, making the mapping and monitoring thereof particularly important. This paper aims at describing a new automated method of shoreline position detection through the utilization of Synthetic Aperture Radar (SAR) images derived from European Space Agency satellites, specifically the operational SENTINEL Series. The resultant delineated shorelines are validated against those derived from video monitoring systems and in situ monitoring; a mean distance of 1 and a maximum of 3.5 pixels is found.

Funder

European Unions Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Water Surface Borders on Satellite Images;2024 47th MIPRO ICT and Electronics Convention (MIPRO);2024-05-20

2. Image Enhancement using CLAHE and Noise Removal for Shoreline Detection Framework;2023 3rd International Conference on Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS);2023-12-06

3. Subpixel Accuracy of Shoreline Monitoring Using Developed Landsat Series and Google Earth Engine Technique;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2023-11-13

4. Advances in Shoreline Detection using Satellite Imagery;Journal of the Korean Society of Marine Environment and Safety;2023-10-30

5. Coastal erosion in temperate barriers: an anthropized sandy beach in Buenos Aires, Argentina;Journal of South American Earth Sciences;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3