A Robust, Non-Cooperative Localization Algorithm in the Presence of Outlier Measurements in Ocean Sensor Networks

Author:

Mei XiaojunORCID,Wu HuafengORCID,Xian Jiangfeng,Chen Bowen,Zhang Hao,Liu Xia

Abstract

As an important means of multidimensional observation on the sea, ocean sensor networks (OSNs) could meet the needs of comprehensive information observations in large-scale and multifactor marine environments. In what concerns OSNs, accurate location information is the basis of the data sets. However, because of the multipath effect—signal shadowing by waves and unintentional or malicious attacks—outlier measurements occur frequently and inevitably, which directly degrades the localization accuracy. Therefore, increasing localization accuracy in the presence of outlier measurements is a critical issue that needs to be urgently tackled in OSNs. In this case, this paper proposed a robust, non-cooperative localization algorithm (RNLA) using received signal strength indication (RSSI) in the presence of outlier measurements in OSNs. We firstly formulated the localization problem using a log-normal shadowing model integrated with a first order Taylor series. Nevertheless, the problem was infeasible to solve, especially in the presence of outlier measurements. Hence, we then converted the localization problem into the optimization problem using squared range and weighted least square (WLS), albeit in a nonconvex form. For the sake of an accurate solution, the problem was then transformed into a generalized trust region subproblem (GTRS) combined with robust functions. Although GTRS was still a nonconvex framework, the solution could be acquired by a bisection approach. To ensure global convergence, a block prox-linear (BPL) method was incorporated with the bisection approach. In addition, we conducted the Cramer–Rao low bound (CRLB) to evaluate RNLA. Simulations were carried out over variable parameters. Numerical results showed that RNLA outperformed the other algorithms under outlier measurements, notwithstanding that the time for RNLA computation was a little bit more than others in some conditions.

Funder

National Natural Science Foundation of China

the Shanghai Committee of Science and Technology

the Postgraduate Innovation Foundation of Shanghai Maritime University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3