Abstract
Large volumes of automatic identification system (AIS) data provide new ideas and methods for ship data mining and navigation behavior pattern analysis. However, large volumes of big data have low unit values, resulting in the need for large-scale computing, storage, and display. Learning efficiency is low and learning direction is blind and untargeted. Therefore, key feature point (KFP) extraction from the ship trajectory plays an important role in fields such as ship navigation behavior analysis and big data mining. In this paper, we propose a ship spatiotemporal KFP online extraction algorithm that is applied to AIS trajectory data. The sliding window algorithm is modified for application to ship navigation angle deviation, position deviation, and the spatiotemporal characteristics of AIS data. Next, in order to facilitate the subsequent use of the algorithm, a recommended threshold range for the corresponding two parameters is discussed. Finally, the performance of the proposed method is compared with that of the Douglas–Peucker (DP) algorithm to assess its feature extraction accuracy and operational efficiency. The results show that the proposed improved sliding window algorithm can be applied to rapidly and easily extract the KFPs from AIS trajectory data. This ability provides significant benefits for ship traffic flow and navigational behavior learning.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献