Microdosimetry Study of Proton Quality Factor Using Analytic Model Calculations

Author:

Papadopoulos AlexisORCID,Kyriakou Ioanna,Matsuya YusukeORCID,Incerti SébastienORCID,Daglis Ioannis A.,Emfietzoglou Dimitris

Abstract

The quality factor (Q) is formally linked to the stochastic (e.g., carcinogenic) risk of diverse ionizing radiations at low doses and/or low dose rates. Q can be a function of the non-stochastic physical quantity Linear Energy Transfer (LET) or the microdosimetric parameter lineal energy (y). These two physical quantities can be calculated either by Monte Carlo (MC) track-structure simulations or by analytic models. In this work, various generalized analytical models were utilized and combined to determine the proton lineal energy spectra in liquid water spheres of various sizes (i.e., 10–3000 nm diameter) over the proton energy range of 1–250 MeV. The calculated spectra were subsequently used within the Theory of Dual Radiation Action (TDRA) and the ICRU Report 40 microdosimetric methodologies to determine the variation of Q¯ with proton energy. The results revealed that the LET-based Q values underestimated the microdosimetric-based Q¯ values for protons with energy below ~100 MeV. At energies relevant to the Bragg peak region (<20–30 MeV), the differences were larger than 20–50%, while reaching 200–500% at ~5 MeV. It was further shown that the microdosimetric-based Q¯ values for protons below ~100 MeV were sensitive to the sphere size. Finally, condensed-phase effects had a very small (<5%) influence on the calculated microdosimetric-based Q¯ over the proton energy range considered here.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference60 articles.

1. Microdosimetry,1983

2. The Quality Factor in Radiation Protection: Report of a Joint Task Group of the ICRP and the ICRU to the ICRP and the ICRU,1986

3. 1990 Recommendations of the International Commission on Radiological Protection,1991

4. Recommendations of the ICRP,1977

5. International Commission on Radiation Units and Measurements. Journal of the ICRU 2014, 14, NP.1-NP https://journals.sagepub.com/description/cru

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3