Abstract
Collision prevention is critical for navigational safety at sea, which has developed rapidly in the past decade and attracted a lot of attention. In this article, an improved velocity obstacle (IVO) algorithm for intelligent collision avoidance of ocean-going ships is proposed in various operating conditions, taking into count both a ship’s manoeuvrability and Convention on the International Regulations for Preventing Collisions at Sea (COLREGs). An integrated model combines a three-degree-of-freedom manoeuvring model with ship propeller characteristics to provide a precise prediction of ships in various manoeuvring circumstances. In the given case, what is different to present studies, this improved algorithm allows for decision-making in two ways: altering course and changing speed. The proposed technique is demonstrated in a variety of scenarios through simulation. The findings reveal that collision-avoidance decision-making can intelligently avoid collisions with the target ships (TSs) in multi-ship situations.
Funder
National Natural Science Foundation of China
National Key Research and Development Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献