Intelligent Collision Avoidance Method for Ships Based on COLRGEs and Improved Velocity Obstacle Algorithm

Author:

Zhao Xingya,He Yixiong,Huang Liwen,Mou Junmin,Zhang KeORCID,Liu Xiao

Abstract

Collision prevention is critical for navigational safety at sea, which has developed rapidly in the past decade and attracted a lot of attention. In this article, an improved velocity obstacle (IVO) algorithm for intelligent collision avoidance of ocean-going ships is proposed in various operating conditions, taking into count both a ship’s manoeuvrability and Convention on the International Regulations for Preventing Collisions at Sea (COLREGs). An integrated model combines a three-degree-of-freedom manoeuvring model with ship propeller characteristics to provide a precise prediction of ships in various manoeuvring circumstances. In the given case, what is different to present studies, this improved algorithm allows for decision-making in two ways: altering course and changing speed. The proposed technique is demonstrated in a variety of scenarios through simulation. The findings reveal that collision-avoidance decision-making can intelligently avoid collisions with the target ships (TSs) in multi-ship situations.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Navigation Decision-Making Method of Complex Multitype Ships’ Routing Waters;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering;2024-12

2. Research of Methods of Collision Warning and Avoidance Assistant Decision Making for the Ship in Typical Inland TSS Waters;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering;2024-06

3. A fuzzy Bayesian network risk assessment model for analyzing the causes of slow-down processes in two-stroke ship main engines;Ships and Offshore Structures;2024-03-03

4. Design and performance evaluation of power system for unmanned ship based on proton exchange membrane fuel cell;International Journal of Hydrogen Energy;2024-03

5. Dynamic Adaptive Decision-Making Method for Autonomous Navigation of Ships in Coastal Waters;IEEE Transactions on Intelligent Transportation Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3