Virtual Reality Adaptation Using Electrodermal Activity to Support the User Experience

Author:

Chiossi FrancescoORCID,Welsch RobinORCID,Villa SteevenORCID,Chuang LewisORCID,Mayer SvenORCID

Abstract

Virtual reality is increasingly used for tasks such as work and education. Thus, rendering scenarios that do not interfere with such goals and deplete user experience are becoming progressively more relevant. We present a physiologically adaptive system that optimizes the virtual environment based on physiological arousal, i.e., electrodermal activity. We investigated the usability of the adaptive system in a simulated social virtual reality scenario. Participants completed an n-back task (primary) and a visual detection (secondary) task. Here, we adapted the visual complexity of the secondary task in the form of the number of non-player characters of the secondary task to accomplish the primary task. We show that an adaptive virtual reality can improve users’ comfort by adapting to physiological arousal regarding the task complexity. Our findings suggest that physiologically adaptive virtual reality systems can improve users’ experience in a wide range of scenarios.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Detection of External and Internal Attention in Virtual Reality using EEG and Eye Tracking Features;Proceedings of Mensch und Computer 2024;2024-09

2. Optimizing Visual Complexity for Physiologically-Adaptive VR Systems: Evaluating a Multimodal Dataset using EDA, ECG and EEG Features;Proceedings of the 2024 International Conference on Advanced Visual Interfaces;2024-06-03

3. Designing Grocery Shopping Experiences for Virtual Reality;Proceedings of the 2024 International Conference on Advanced Visual Interfaces;2024-06-03

4. The CHI’24 Workshop on the Future of Cognitive Personal Informatics;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-11

5. Hybrid Adaptive Systems;Business & Information Systems Engineering;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3