A Better Mechanistic Understanding of Big Data through an Order Search Using Causal Bayesian Networks

Author:

Yoo Changwon,Gonzalez EfrainORCID,Gong ZhenghuaORCID,Roy DeoduttaORCID

Abstract

Every year, biomedical data is increasing at an alarming rate and is being collected from many different sources, such as hospitals (clinical Big Data), laboratories (genomic and proteomic Big Data), and the internet (online Big Data). This article presents and evaluates a practical causal discovery algorithm that uses modern statistical, machine learning, and informatics approaches that have been used in the learning of causal relationships from biomedical Big Data, which in turn integrates clinical, omics (genomic and proteomic), and environmental aspects. The learning of causal relationships from data using graphical models does not address the hidden (unknown or not measured) mechanisms that are inherent to most measurements and analyses. Also, many algorithms lack a practical usage since they do not incorporate current mechanistic knowledge. This paper proposes a practical causal discovery algorithm using causal Bayesian networks to gain a better understanding of the underlying mechanistic process that generated the data. The algorithm utilizes model averaging techniques such as searching through a relative order (e.g., if gene A is regulating gene B, then we can say that gene A is of a higher order than gene B) and incorporates relevant prior mechanistic knowledge to guide the Markov chain Monte Carlo search through the order. The algorithm was evaluated by testing its performance on datasets generated from the ALARM causal Bayesian network. Out of the 37 variables in the ALARM causal Bayesian network, two sets of nine were chosen and the observations for those variables were provided to the algorithm. The performance of the algorithm was evaluated by comparing its prediction with the generating causal mechanism. The 28 variables that were not in use are referred to as hidden variables and they allowed for the evaluation of the algorithm’s ability to predict hidden confounded causal relationships. The algorithm’s predicted performance was also compared with other causal discovery algorithms. The results show that incorporating order information provides a better mechanistic understanding even when hidden confounded causes are present. The prior mechanistic knowledge incorporated in the Markov chain Monte Carlo search led to the better discovery of causal relationships when hidden variables were involved in generating the simulated data.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference41 articles.

1. Causality: Models, Reasoning, and Inference;Pearl,2009

2. A causal calculus I & II;Good;Br. J. Philos. Sci.,1961

3. A Probabilistic Theory of Causality;Suppes,1970

4. Discovering Causal Structure;Glymour,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3