A Statistical–Distributed Model of Average Annual Runoff for Water Resources Assessment in DPR Korea

Author:

Ri Tongho,Jiang JipingORCID,Sivakumar BellieORCID,Pang Tianrui

Abstract

Water resource management is critical for the economic development of the Democratic People’s Republic of Korea (DPRK), where runoff plays a central role. However, long and continuous runoff data at required spatial and temporal scales are generally not available in many regions in DPRK, the same as in many countries around the world. A common practice to fill the gaps is to use some kind of interpolation or data-infilling methods. In this study, the gaps in annual runoff data were filled using a distributed runoff map. A novel statistical–distributed model of average annual runoff was derived from 50 years’ observation on 200 meteorological observation stations in DPRK, considering the influence of climatic factors. Using principal component analysis, correlation analysis and residual error analysis, average annual precipitation, average annual precipitation intensity, average annual air temperature, and hot seasonal air temperature were selected as major factors affecting average annual runoff formation. Based on the water balance equation and assumptions, the empirical relationship for runoff depth and impact factors was established and calibrated. The proposed empirical model was successfully verified by 93 gauged stations. The cartography of the average annual runoff map was automatically implemented in ArcGIS. A case study on the Tumen River Basin illustrated the applicability of the proposed model. This model has been widely used for the development and management of water resources by water-related institutes and design agencies in DPRK. The limitation of the proposed model and future works are also discussed, especially the impacts of climate changes and topology changes and the combination with the physical process of runoff formation.

Funder

National Natural Science Foundation of China

Southern University of Science and Technology

State Key Laboratory of Urban Water Resource and Water Environment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3