Assessing Feed-Forward Backpropagation Artificial Neural Networks for Strain-Rate-Sensitive Mechanical Modeling

Author:

Tuninetti Víctor1ORCID,Forcael Diego1,Valenzuela Marian2,Martínez Alex1,Ávila Andrés3,Medina Carlos4ORCID,Pincheira Gonzalo5ORCID,Salas Alexis4ORCID,Oñate Angelo67ORCID,Duchêne Laurent8

Affiliation:

1. Department of Mechanical Engineering, Universidad de La Frontera, Temuco 4811230, Chile

2. Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile

3. Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Temuco 4811322, Chile

4. Department of Mechanical Engineering, Faculty of Engineering, University of Concepción, Concepción 4070138, Chile

5. Department of Industrial Technologies, Faculty of Engineering, Universidad of Talca, Curicó 3340000, Chile

6. Department of Mechanical Engineering, Faculty of Engineering, Universidad del Bío-Bío, Concepción 4081112, Chile

7. Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepcion, Concepción 4070138, Chile

8. Department ArGEnCo-MSM, University of Liège, 4000 Liège, Belgium

Abstract

The manufacturing processes and design of metal and alloy products can be performed over a wide range of strain rates and temperatures. To design and optimize these processes using computational mechanics tools, the selection and calibration of the constitutive models is critical. In the case of hazardous and explosive impact loads, it is not always possible to test material properties. For this purpose, this paper assesses the efficiency and the accuracy of different architectures of ANNs for the identification of the Johnson–Cook material model parameters. The implemented computational tool of an ANN-based parameter identification strategy provides adequate results in a range of strain rates required for general manufacturing and product design applications. Four ANN architectures are studied to find the most suitable configuration for a reduced amount of experimental data, particularly for cases where high-impact testing is constrained. The different ANN structures are evaluated based on the model’s predictive capability, revealing that the perceptron-based network of 66 inputs and one hidden layer of 30 neurons provides the highest prediction accuracy of the effective flow stress–strain behavior of Ti64 alloy and three virtual materials.

Funder

Universidad de La Frontera

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

1. Serope, K., and Schmid, S.R. (2006). Manufacturing Engineering and Technology, Pearson Education, Inc.. [4th ed.].

2. Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms;Karpat;Mater. Manuf. Process.,2007

3. Multiscale topology optimization of biodegradable metal matrix composite structures for additive manufacturing;Zhang;Appl. Math. Model.,2023

4. Optimizing laser power of directed energy deposition process for homogeneous AISI M4 steel microstructure;Jardin;Opt. Laser Technol.,2022

5. Dynamic numerical prediction of plasticity and damage in a turbofan blade containment test;Valle;Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3