Development and Test of Geogrid with Distributed Deformation Monitoring Function

Author:

Zhang Jiong12,Li Yi1,Meng Bowen1,Ding Jie1,She Rui1,Ren Shipu2,Liu Qifang1

Affiliation:

1. School of Civil Engineering, Shandong University, No. 17923 Jingshi Road, Jinan 250000, China

2. Shandong Huajian Engineering Testing Company Limited, Luguang Technology Industrial Park, Keyuan Road, High-Tech Zone, Jinan 250000, China

Abstract

In recent years, there is a growing demand for materials that can both improve the mechanical properties of structures and carry out health monitoring and risk warning. In this case, in order to realize distributed deformation monitoring, a new method of making geogrid by 3D printing technology is proposed. The grille rib is made by embedding the conductive polymer (ground carbon fiber as conductive filler) into the insulating shell (PLA material) in the specified path, and then the rib is vertically crossed into each other to form a grille sample. In order to study the distributed deformation monitoring function of this grid, a manual push–pull testing machine was used to conduct a load–unload experiment to analyze the change rule of resistance on the grid plane. The following conclusions were obtained: the closer the ribs are to the load bearing point, the greater the change in resistance, and conversely, the farther the ribs are from the load bearing point, the smaller the change in resistance. Depending on the geogrid network characteristics, the electrical resistance distribution on the geogrid plane can be obtained by superimposing the resistance values of the horizontal and longitudinal ribs, then the location and the magnitude of deformation can be estimated. Additionally, this study carried out numerical simulation of the grid model based on ANSYS 15.0 software and compared with the loading experiment results to verify that the force deformation position can be retrieved through the change of resistance.

Funder

the key R&D plan of Shandong Province for major scientific and technological innovation projects

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3