Small-Scale Environmental Drivers of Plant Community Structure and Diversity in Neotropical Montane Cloud Forests Harboring Threatened Magnolia dealbata in Southern Mexico

Author:

Domínguez-Yescas Reyna,Vázquez-García José AntonioORCID,Muñiz-Castro Miguel ÁngelORCID,Hernández-Vera Gerardo,Salcedo-Pérez Eduardo,Rodríguez-Pérez Ciro,Gallardo-Yobal Sergio IgnacioORCID

Abstract

Gradient analysis was used to determine factors driving small-scale variation of cloud forest communities harboring Magnolia dealbata, a threatened species and bioculturally relevant tree for the Chinantecan, Mazatecan, Nahuan, and Zapotecan ethnicities in southern Mexico. Particularly, we aimed to: (a) determine factors explaining major community gradients at different heterogeneity scales along a small-scale elevational gradient, (b) test the Decreasing and the Continuum hypotheses along elevation, and (c) classify vegetation to assist in identifying conservation priorities. We used a stratified random sampling scheme for 21 woody stands along a small-scale (352 m) elevational transect. Four main data matrices were used (presence-absence, density, basal area, and guild data). Through Non-metric Multidimensional Scaling (NMS), Principal Coordinates Analysis (PCoA), and distance-based Redundancy Analysis (db-RDA), we found that major community variation was explained by soil pH, displaying an outstanding vegetation discontinuity, separating the species-rich relic Oreomunnea-Ticodendron-stands from stands with higher importance values for M. dealbata. The high species richness observed was explained by a combination of the windward effect of dry-seasonal maximum cloud condensation gain and habitat differentiation-specialization, a phenomenon that may also explain the mid-peak hypothesis and ensure the survival of relic species. Sampling-truncation and conservation status also played a role in this. Our results do not support the Decreasing and Continuum hypotheses along elevation.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3